Computer-Designed Portraits, Knit By Hand!


Artist [Petros Vrellis] has done something that we’ve never seen before: his piece “A New Way to Knit” lives up to its name. What he’s done is to take the traditional circular loom, some black thread, and toss some computing at it. And then he loops the string around and around and around.


The end result of following the computer’s instructions is a greyscale portrait. Where few black strings overlap, it’s light, and where more overlap, it’s darker. That’s the whole gimmick, but the effect is awesome. As you zoom in and out, it goes from a recognizable face to a tangle of wires and back. Check out his video embedded below.

There’s at least a few ways to do this, so we e-mailed [Petros] to ask. He assigned darker pixels in the original image a higher score, and ran the string to the opposing pin that maximizes the sum of the pixels passed through. With each string, he subtracted off a bit of darkness from all of the pixels along the string’s path, and repeated, starting each time at the new pin location. Each string has “only” 200 choices to make times 3000-4000 passes, so a computer should be done in no time. Tuning this algorithm to work just right, and look good with real string is probably just about as easy as it sounds. For instance, he had to include code to break ties.

Although we love the man-machine cooperation on the piece, [Petros] mentioned that he’s tempted to automate the weaving. Check out his two pendulum-based pieces (here, and here) if you like more machines in your art.

While on the topic of portraits made with black string, we have to remind you of this previous art piece that does all the work of actually laying the string out by using a modified 3D printer. Beauty is in the eye of the beholder, but we have to say that if art were judged on a difficulty scale, [Petros] would win for using only a circular loom. Never mind that he did it all by hand.


Source link

Leave a Reply

Your email address will not be published. Required fields are marked *